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A B S T R A C T   

The trucking industry is the backbone of domestic supply chains. In the context of the COVID-19 pandemic, road 
transportation has been essential to guarantee the supply of basic goods to confined urban areas. However, the 
connectivity of the trucking network can also act as an efficient virus spreader. This paper applies network 
science to uncover the characteristics of the trucking network in one major Latin American country − Colombia−
and provides evidence on freight networks’ ability to spread contagious diseases spatially. Network metrics, 
official COVID-19 records at the municipality level, and a zero-inflated negative binomial model are used to test 
the association between network topology and confirmed COVID-19 cases. Results suggest that: (i) the number of 
COVID-19 cases in a municipality is linked to its level and type of network centrality; and (ii) being a port-city 
and a primary economic hub in the trucking network is associated with a higher probability of contracting earlier 
a pandemic. Based on these results, a risk-based approach is proposed to help policymakers implement 
containment measures.   

1. Introduction 

Accounting for more than 70% of the volume and 80% of the value of 
domestic freight movements, trucking is the primary transportation 
mode within countries in Latin America (Barbero and Guerrero, 2017; 
Londoño-Kent, 2007). In 2019, road transportation mobilized 81% of 
freight in Colombia (97% when excluding oil and coal), for a total of 247 
million tons distributed in 35 million trips (7.05 tons per trip) across the 
country (MinTransporte, 2019). There are approximately 3400 trucking 
companies in Colombia, with half of them operating in the long-haul 
segment. In addition, informal transportation accounts for an esti-
mated 40% of freight movement (El Tiempo, 2001; MinTransporte, 
2019). 

Ensuring trucking operations’ continuity during the COVID-19 
pandemic has been critical to guarantee the supply of essential goods 
to confined urban areas. Trucking is the only transport mode connecting 
production nodes with seaports and local consumption centers for most 
regions. However, in the context of an epidemic outbreak, the connec-
tivity of a transport network can also act as an efficient virus spreader 
(Meloni et al., 2009). For example, among the first COVID-19 cases re-
ported in Colombia was a 55-year-old long-haul truck driver who drove 

across the country from the border of Venezuela to the port of Buena-
ventura on the Pacific coast; he only developed symptoms once he 
arrived in Buenaventura. Likewise, one of the first positive cases of 
COVID-19 in Uruguay was a truck driver from Argentina that drove to 
Montevideo. Unfortunately, his case was confirmed when he was 
already back in Buenos Aires. 

In many developing countries, COVID-19 safety protocols for the 
trucking industry were not implemented until several weeks after the 
first cases were reported. For example, in Colombia, these measures 
were issued on April 24, 2020, by the Ministry of Health and Social 
Protection (Minsalud, 2020). The absence of regulation created 
numerous operational hurdles and uncertainties for trucking companies, 
with longer waiting times and the need to stop at various intermediate 
checkpoints when driving through different jurisdictions. Overall, it 
increased the risk of COVID-19 expansion through the trucking network. 
This paper shows to what extent it did so by uncovering the character-
istics of the Colombian trucking network and identifying the level of 
exposure to virus spatial propagation for each municipality. Network 
and statistical methods were combined to detect critical road connec-
tions for virus propagation. Based on this analysis, we propose a 
risk-based approach to help policymakers implement containment 
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measures while ensuring business continuity in the trucking industry, 
thus improving critical supply chains’ resiliency. 

The paper is organized as follows: Section 2 reviews the extant 
literature on virus propagation and transport network dynamics; Section 
3 briefly describes the trucking sector in Colombia in the context of the 
COVID-19 emergency; Section 4 presents the methodology to explore 
the association between the trucking network topology and the spread of 
COVID-19 in Colombia; Section 5 presents the results; Section 6 dis-
cusses the findings; and Section 7 concludes. 

2. Literature review 

A viral infection spreads as the virus passes from host to host (Balcan 
and Vespignani, 2011). In the case of coronaviruses, the spatial spread is 
a function of a person’s degree of connectivity and his/her ability to 
transport the virus to new places (Iacus et al., 2020). An extensive 
literature in epidemiological research studies the association between 
the transmission risk of infectious diseases and transport networks. 
These studies are based on two assumptions: first, propagation occurs 
through contacts among individuals linked by social networks 
(Kretzschmar and Morris, 1996); second, populations are spatially iso-
lated but connected through transportation. This approach allows a 
simple though clear understanding of mobility patterns and their rela-
tionship with virus transmission, either at the individual or group level 
(e.g., city, municipality) (Li et al., 2021). Indeed, Bian & Liebner (2007) 
show that individuals’ spatial distribution and mobility facilitate un-
derstanding the spatial heterogeneity in infectious disease transmission. 
Related to this, Mao and Bian (2010) use dynamic social network 
analysis to assess the efficacy of travel-based, contact-based and random 
vaccination programs, finding that inter-community travel should be of 
primary relevance when choosing proper vaccination strategies. 

Air travel has been one of the primary spatial spreaders of infectious 
diseases for the past two decades (Yang et al., 2015). Khan et al. (2009) 
investigated how travelers departing from Mexico City disseminated the 
H1N1 virus worldwide and simulated future virus transmission based on 
the air transport network’s topology. Yang et al. (2015) showed that the 
network’s structural properties significantly affected epidemic 
spreading and outbreak in traffic-driven spreading dynamics, with 
network hubs disseminating infections faster and at a larger scale. 
Poletto et al. (2012) suggested that, together with network topology and 
hosts’ movements, the length of stay at destination significantly 
impacted the threshold conditions for the global epidemic invasion. 

Extant literature has also analyzed mobility patterns at the city level 
to understand local transmission. Balcan and Vespignani (2011) found a 
transition phase during virus dissemination between when only a sub-
group is affected and when contagion affects the network on a large 
scale, where commuting patterns determine the threshold. Xu et al. 
(2013) studied the spread of an infectious disease through public 
transport systems, suggesting that these are a bridge through which 
infections travel from one location to another and a place of contagion 
given the proximity between travelers. Their findings recommend 
increasing transportation efficiency and improving sanitation and 
ventilation to decrease an outbreak’s chance of spreading further. Yang 
and Wang (2016) analyzed the control of traffic-driven epidemic 
spreading by immunization strategy, considering random, degree-based, 
and betweenness-based strategies. Their results suggest that outbreaks 
can be effectively suppressed when a small fraction of nodes with the 
highest betweenness centrality are vaccinated. 

Research on the outbreak of COVID-19 in China found a positive 
correlation between confirmed cases at the national level and the total 
number of passengers traveling outside the Hubei province (Kraemer 
et al., 2020; Zhao et al., 2020). Iacus et al. (2020) used the variation in 
the European Union mobility restrictions implemented independently 
by the member states to analyze virus dissemination, showing that 
mobility alone could explain up to 92% of France and Italy’s initial 
spread. In the United States, Harris (2020) explored the relationship 

between subway ridership and the virus’ spatial distribution in New 
York, suggesting that the subway system was a significant disseminator 
of COVID-19 infection during the initial pandemic wave. Badr et al. 
(2020) quantified the relationship between social distancing and 
COVID-19 propagation using mobility patterns between counties in the 
United States as a proxy for social distancing. Their results show a 
substantial benefit from mobility reductions in decreasing virus trans-
mission, with benefits being perceptible between nine days and up to 
three weeks after implementing restrictions. Carlitz and Makhura 
(2021) analyzed the impact of shelter-in-place orders in South Africa, 
finding that mobility reductions were significantly associated with lower 
COVID-19 growth rates two weeks after implementation. Likewise, 
Lawal & Nwegbu (2020) showed that the growth of COVID-19 cases in 
Nigeria during the national lockdown could be mainly attributed to the 
different levels of compliance across provinces. Zhang et al. (2020) 
analyzed the epidemic correlations across 22 countries in six continents 
before and after implementing international travel restriction policies, 
suggesting that restricting air travel in hotspot areas with high infection 
rates is less effective than adopting more integrated and internationally 
coordinated movement restrictions. 

While available literature has mainly focused on air travel and public 
transport systems to uncover the relationship between infectious dis-
eases and mobility, there is still little understanding of the risk that 
freight transportation may pose for virus outbreaks. Previous studies on 
blood-borne and sexually transmitted diseases have found a positive 
association with trucking activity (Apostolopoulos and Sönmez, 2007). 
Through millions of daily trips, trucking networks connect thousands of 
cities in a country. Truck drivers travel long distances and interact with 
individuals from different communities, becoming a risk for acquiring 
and spreading an epidemic (Apostolopoulos et al., 2015). In addition, 
the trucking work nature implies many interactions at rest stops, ter-
minals, check-in points, and other intermediate points (Apostolopoulos 
et al., 2014). In these locations, social ties are formed with heteroge-
neous agents of the society, such as other drivers, cargo dispatchers, 
registry and customs clerks, drivers of private vehicles that stop at petrol 
and personal consumption points, friends, and family (Apostolopoulos 
et al., 2016). In the presence of a highly contagious virus, truck drivers’ 
work represents a real challenge for policymakers, as these jobs are 
crucial to maintaining the supply of essential goods, being hardly 
possible to eliminate social interaction from it (Ranney et al., 2020). 

Bajunirwe et al. (2020) is among the few studies investigating 
trucking activity and the transmission of COVID-19. The authors 
analyzed the first ten weeks from the first COVID-19 case reported in 
Uganda and found a strong relationship between the level of contagion 
and trucking activity. As of May 29, 2020, 71.8% of confirmed cases 
corresponded to truck drivers. Gachohi et al. (2020) reported an in-
crease in HIV and a greater risk of contagion of COVID-19 in East Africa 
due to longer waiting times by truckers at their various intermediate 
stops. In Qingdao, China, Liu et al. (2020) found COVID-19 particles in 
imported frozen products close to being dispatched by the different 
transport modes to local markets. However, to the authors’ knowledge, 
there is still no study that assesses the extent to which the topology of 
trucking networks contributed to the spread of COVID-19. As evidenced 
by extant literature in epidemiology, network theory can be a valuable 
tool to explore this question. For example, as highlighted in Kitsak et al. 
(2010), a trucker with relatively fewer connections may have a greater 
capacity to spread the virus than a trucker with more connections, 
depending on their position in the freight network, the community, and 
the type of relationships between nearby nodes. 

This paper aims to fill in this research gap by combining network 
science and statistical methods. With a focus on Latin America, this 
paper studies a region often overlooked by the available literature that 
analyses virus transmission and mobility. This region became an 
epicenter of the COVID-19 pandemic in July 2020 and, since then, has 
faced several waves of increased cases. In Colombia, the number of 
accumulated confirmed cases as of August 14, 2021, was 4.9 million, 
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with 41.2 thousand active cases and 123.4 thousand deaths (Minsalud, 
2021). By better understanding all the factors that contribute to virus 
transmission, policymakers will be able to design more effective mea-
sures that, at the same time, enhance truck drivers’ safety, reduce the 
risk of the spatial virus spreading, and avoid supply chain disruptions. 

3. Colombia in the COVID-19 context 

This paper focuses the analysis on Colombia, the fourth-largest 
economy in Latin America, where nearly 97% of domestic cargo-
− excluding oil and coal− is mobilized by road transportation (Min-
Transporte, 2019). Due to the lack of a consolidated rail system, trucking 
has historically been the only option to transport goods from production 
centers to seaports and urban areas. In addition, the road network’s 
connectivity allows trucking to reach remote areas, such as the Amazon 
and the Orinoco Regions, rainforest areas located southeast of Bogota, 
the country’s capital city (Fig. 1). 

The first positive case of COVID-19 in Colombia was reported north 
of Bogota on March 6, 2020. It was a 19-year-old patient that arrived 
from Milan, Italy. Three days later, a case was reported in Medellín, the 
second-largest city in the country. On March 24, with 378 confirmed 
cases, the government issued a shelter-in-place order at the national 
level, closing all non-essential activities (INS, 2021). While the Presi-
dential Decrees 457 and 636 restricted mobility at national and state 
levels, it allowed companies authorized by the Colombian Trucking and 
Logistics Association (Colfecar, for its acronym in Spanish) to continue 
operating and guarantee the supply of essential goods to urban pop-
ulations. In addition, the decrees suspended toll payment for truckers as 
an incentive to continue activities across the country. Although the 
sector was severely affected by the drop in domestic and international 
trade and the restrictions applied by local authorities on passenger 
movements, 70% of authorized companies continued operating, moving 
mainly corn, rice, and palm oil from production areas to seaports on 
both Caribbean and Pacific coasts (MinTransporte, 2020). On April 24, 

2020, the Ministry of Health and Social Protection issued the COVID-19 
safety protocols to be implemented by the trucking industry. 

4. Methodology 

The drastic drop in passenger movements due to the national quar-
antine implemented by the government, the continuity of freight 
transportation, the delay in implementing safety protocols, and the 
gradual spread of the virus throughout the national territory present a 
unique opportunity to evaluate the association between road trans-
portation and the spread of the COVID-19 disease in Colombia. To this 
end, we first built the trucking network by using truck origin-destination 
(O-D) data from the Logistics National Observatory (ONL, for its 
acronym in Spanish). The ONL provides annual information on a 
representative sample of 659,334 trips for 2010–2016 for a total of 3780 
O-D pairs. To control for any factor that might have altered trucking in a 
given year, such as inclement weather, road closures, or strikes, we 
avoided selecting one particular year and instead calculated the annual 
average number of trucks for each O-D pair, based on data from a seven- 
year timeframe (2010–2016). To capture regular trips, we exclude O-D 
routes with less than 100 trucking trips. The routes excluded account for 
10% of the total O-D routes. Chiefly, they show a median number of trips 
per month of less than one, therefore not involving regular human in-
teractions in trucking-related activities, as discussed by Iacus et al. 
(2020). Finally, locations were grouped according to the geographical 
units used by national statistics to report COVID-19 cases. 

Data was collected on the total number of COVID-19 cases from the 
National Institute of Health (INS, for its acronym in Spanish), for the 
period March 6, 2020− when the first case was confirmed− to May 6, 
when the pandemic was present in 30% of the geographical units and 
was spreading rapidly throughout the country. During this period, pas-
senger transportation was almost null due to the government’s shelter- 
in-place order issued on March 24, allowing us to test the relationship 
between the trucking network topology and the number of COVID-19 
cases reported at the municipality level. Table 1 shows the top five 
municipalities in Colombia according to the annual average number of 
trucks traveling inbound and outbound, relative to the total number of 
trips in the network. Cali (0.58), Barranquilla (0.54), Santa Marta (0.51) 
and Bogotá (0.51) were the municipalities reporting the highest infec-
tion rates per thousand inhabitants. In turn, they are among the mu-
nicipalities with the highest levels of trucking activity. Notably, 
Barranquilla and Santa Marta are port-cities, and Cali is highly con-
nected to the port-city of Buenaventura. Bogotá and Medellín are the 
most important centers of economic activity in Colombia. 

As control variables for our model, we gathered data from the Na-
tional Administrative Department of Statistics (DANE, for its acronym in 
Spanish) on (i) population (for 2019, the latest available information) 
and (ii) municipality relevance. DANE uses municipality relevance to 
classify Colombian municipalities into seven categories based on four 
criteria (i. e., economic relevance, financial capacity, geographical 
location, and population). The first category − called ‘Special Cat-
egory’− encompasses the most important municipalities in the country. 
The criteria of economic relevance − measured as a municipality’s 

Fig. 1. Colombian road network. 
Source: Logistics Cluster (2014). 

Table 1 
Main nodes in the trucking network and their COVID-19 infection rate as of May 
6, 2020.  

Node Inbound 
(%) 

Outbound 
(%) 

COVID-19 cases per thousand 
inhabitants 

Santa Marta 8.01 6.58 0.51 
Cali 6.99 2.60 0.58 

Bogotá 5.71 6.45 0.51 
Medellín 5.15 5.86 0.18 

Barranquilla 4.97 4.86 0.54 

Notes: Node’s relative importance to the national network. Own elaboration 
with data extracted from ONL. 
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contribution to the added value of a given Colombian region (i.e., 
Caribbean, Antioquia, etc.)− is used as an independent variable to 
control for the variability in economic activity among municipalities 
belonging to the same category of relevance. Finally, a dummy variable 
was created that takes the value of one if the node is a seaport munici-
pality or zero otherwise. Table 2 presents the descriptive statistics at the 
municipality level, according to the data collected: 

Gephi (Bastian et al., 2009) was used to visualize the trucking 
network in Colombia, modelling nodes’ and links’ characteristics to 
uncover the network topology. Using network analysis allows us to 
overcome the limitations of simple spatial association, which has been 
proven to be a poor predictor of disease spatial spreads unless there is 
connectivity between potential spreaders (Iacus et al., 2020). Then, 
following Wang et al. (2011) and Calatayud et al. (2017), network 
metrics, shown in Table 3, were applied. 

These metrics were calculated and used to test the association be-
tween the trucking network topology and the spatial distribution of 
COVID-19 cases. To model this association, we need to consider three 
features of the dependent variable: first, the accumulated number of 
COVID-19 cases is a count variable and must be modeled accordingly; 
second, by May 6, 2020, only 30% of Colombian municipalities reported 
COVID-19 cases, so the value for the rest of municipalities equals zero; 
third, as shown in Table 2, the variable presents overdispersion with a 
coefficient of variation equal to seven, meaning that some municipalities 
were already significantly more affected than others during the time 
frame considered in this study. Taking into account this level of varia-
tion, we follow Cameron and Trivedi (2005) in applying a zero-inflated 
negative binomial specification to statistically test the potential spread 
of the COVID-19 virus through the trucking network by maximizing a 
likelihood function that is a combination of the logistic and the negative 
binomial probability distributions. The logistic distribution enables 
testing for the extensive margin of the virus, i. e., if the municipality 
belongs to the group not reached by the virus by May 6, as a function of 
the seaport condition of the municipality or belonging to the Special 
Category in the DANE classification. In turn, the negative binomial 
distribution enables testing for the intensive margin or the association 
between the trucking network metrics and the number of COVID-19 
accumulated cases at the municipality level. 

The likelihood function takes the following inputs (Array 1):  

○ yi  
○ εγ

i = γ1Seaporti + γ2SpecialCategoryi + ∅i  

○ εβ
i = β1DMi + β2ln(CBi)+ β3Cci + β4Populationi + β5MRi + β6ERi +
∑H− 1

h=1 σhNChi + θi 

μi = exp
(
εβ

i
)

(1)    

○ pi = 1/(1 + αμi)

○ m = 1/α 

Where yi is the count of COVID-19 confirmed cases as of May 6, 2020, in 
municipality i; Seaport takes the value of one if municipality i has a 

seaport condition in the network or zero otherwise, and SpecialCategory 
does the same whenever the municipality i is part of the most relevant 
category of municipalities according to DANE. DMi stands for degree 
metrics and take the form of kT

i , kin
i (t), Wkin

i (t), and Wkout
i (t) in each 

model; we estimate various models with different degree metrics to 
avoid problems of collinearity. CBi and Cci represent betweenness and 
closeness centrality, respectively. MRi is the municipality relevance; and 
ERi is the economic relevance. ∅i and θi represent the idiosyncratic er-
rors of each component. Also, from the network topology analysis, we 
retrieve the number of communities highly connected in the network by 
optimizing the level of modularity, i. e, the fraction of the edges that fall 
within a given partition of C communities minus the expected fraction if 
edges were randomly distributed. According to Leicht and Newman 
(2008), the modularity of a directed network (Qd), like the trucking 
network in this context, can be represented formally as Equation (2): 

Qd =
1
ϑ

∑

ij

[

Aij −
kin

i (t)kout
i (t)

ϑ

]

δ
(
ci, cj

)
(2)  

Where ϑ stands for the number of edges in the network, Aij represents 
the existence of an arc between nodes i and j, c is the community to 
which node i or j belong, and the δ-function δ(u, v) takes the value of one 
if u = v, and zero otherwise. We obtain the optimal number of com-
munities using the algorithm developed by Blondel et al. (2008). Next, 
to capture common baseline variation among nodes that belong to the 
same community, the model introduces NC as a set of H variables which 
take the value of one in the case the municipality i belongs to the 
network community h and zero otherwise. Finally, the parameter α is the 
negative binomial overdispersion parameter; and parameters μi, pi, and 
m are the standard parameters of the negative binomial probability 
distribution. 

Therefore, we obtain the parameters γ, β, and σ, that optimize the 
log-likelihood function presented in Equation (3): 

lnL=
∑

i ∈ S
ln

{
F(εγ

i )+ (1 − F(εγ
i ))p

m
i

}
+

∑

i ∕∈ S

{

ln(1 − F(εγ
i ))+ lnΓ(m+ yi) − lnΓ(yi + 1) (3)  

− lnΓ(m)+m ln pi + yi ln(1 − pi)}

Where S is the set of municipalities with no COVID-19 cases by May 6, 
2020 (i.e., yi = 0); and F and Γ are the standard logistic and gamma 
probability distribution functions, respectively. Finally, statistical 
inference is obtained by clustering standard errors at the community 
level. 

5. Results 

Fig. 2 shows the trucking network in Colombia. The network has 156 
nodes corresponding to the municipalities of origin or destination and 
3780 links corresponding to O-D trucking trips reported in the ONL 
representative sample. According to their degree centrality, the network 
has a hub-and-spoke configuration, with eight municipalities emerging 
as main hubs: Santa Marta, Cali, Bogotá, Medellín, Barranquilla, Maicao, 
Cartagena de Indias, and Cúcuta. Except for Maicao and Santa Marta, 
hubs concur with the municipalities belonging to the Special Categor-
y− the most relevant municipalities in Colombia− in the DANE classifi-
cation. Located at the border with Venezuela, the connectivity of Maicao 
is explained by its role as a critical hub for international trade and freight 
transportation. 

Municipalities more strongly connected by a higher number of O-D 
trips form a community. The trucking network in Colombia is organized 
around five communities (Fig. 2), concentrated around a central node. 
These central nodes are: 

Table 2 
Descriptive statistics at the municipality level.  

Variable Municipalities Mean S. D. Min Max 

COVID-19 cases 156 44.6 312.9 0.0 3688.0 
Population (thousands) 156 125.5 629.8 1.8 7181.5 
Inbound trips 156 221.7 477.6 15.4 2987.1 
Outbound trips 156 221.7 430.0 15.0 2360.7 
Municipality relevance 156 5.3 1.7 1.0 7.0 
Economic relevance 156 4.9 14.1 0.1 100.0 
Seaport 156 0.03 0.2 0.0 1.0  
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• Bogotá (in light green in Fig. 2), agglomerating 25.6% of total net-
work’s nodes, which are located in the central area of the country 
and supply the Bogotá area with different types of goods;  

• Santa Marta (in purple), closely linked to 23.7% of nodes in the 
network, which are mostly located on the Caribbean coast, con-
nected to them by trucking trips carrying import and export goods 
to/from the main seaports in the country;  

• Medellín (in blue), agglomerating 18.6% of nodes, which are on the 
western part of the country and supply the Medellín area with 
different types of goods;  

• Cali (in orange), tightly connected to 23.1% of the nodes through 
trucking trips for domestic and international markets (through the 
port of Buenaventura, the largest in the country, and the border 
crossing with Ecuador at Ipiales);  

• Cúcuta (in dark green), agglomerating 9% of the network nodes 
located on the border with Venezuela, connected through trucking 
trips carrying import and export goods to/from the border. 

On average, each node is connected to seven other nodes in the 
network (Table 4). However, due to the network’s hub-and-spoke 
configuration, the maximum number of connections is 56, equivalent 
to a third of the network’s nodes. The nodes in the Caribbean community 
− in color purple in Fig. 2− concentrate almost a third of the total 
number of trips in the trucking network. This concentration level is 
explained by the area’s relevance for international trade, with seaports 
in Barranquilla, Cartagena, and Santa Marta and a land border crossing 
in Maicao. These gateways are connected to domestic exporting and 
importing areas by road transportation. 

Fig. 3 shows the trucking network in Colombia, combined with data 
on accumulated COVID-19 cases at the municipality level by May 6, 
2020. The intensity of the blue color reflects the level of node infection. 
The different node sizes denote the number of trips they generate, with 
more significant nodes being the origin of more trucking activity. Bogotá 
is the most affected node in the network regarding the count of COVID- 
19 cases, which is 3.5 times greater than Cali, the second node with the 
highest contagion level. Both nodes generate 9.1% of total trips in the 
network, with primary destinations located in the southwestern part of 
the country, mainly the border crossing with Ecuador − Ipiales− and the 
port of Buenaventura. Despite the lower nominal infection levels of 
Barranquilla, Cartagena de Indias, and Santa Marta, it is worth noting 
that the three belong to the same community − the Caribbean 
community− thus being closely connected by a high number of daily 
trips. 

Table 5 reports the results from the model. The logistic regression 
results indicate that nodes that are port-cities or belong to the Special 
Category in the DANE classification have a higher probability of being 
part of the infected nodes during the initial phase of a viral disease 
outbreak. Indeed, by May 6, 2020, all cities in the Special Category had 

Fig. 2. Trucking network in Colombia. 
Notes: The nodes’ size reflects the number of in-
bound trucks, and the size of the links represents 
the number of trips between pairs of nodes (i.e., 
weight). Colors identify the community’s nodes. 
(For interpretation of the references to color in this 
figure legend, the reader is referred to the Web 
version of this article.) 
Source: Own elaboration in Gephi with data from 
ONL.   

Table 4 
Colombian trucking network metrics.  

Variable Mean S. D. Max 

Degree (kt) 7.1 10.2 56.0 

In-degree (kin) 3.5 5.1 27.0 

Weighted degree 443.5 882.1 5347.9 
Weighted in-degree (Wkin) 1552.1 3343.5 20,910 

Weighted out-degree (Wkout) 1552.1 3010.3 16,525 

Ln(Betweenness) (ln  Cb) 2.65 3.18 9.7 
Closeness (Cc) 0.28 0.22 1.0  

Table 3 
Network metrics.  

Metric Definition Formula 

In-degree The number of links a node i receives 
from other nodes j in moment t. In our 
research, it refers to the number of 
trucking routes finishing at a given 
municipality.  

kin
i (t) =

∑N(t)

j=1
aij(t)

Out-degree The number of links a node i sends to 
other nodes j in moment t. In our 
research, it is the number of trucking 
routes originating at a given 
municipality.  

kout
i (t) =

∑N(t)

j=1
aji(t)

Degree The sum of in and out degrees. kT
i (t) = kin

i (t)+
kout

i (t)
Weighted in- 

degree 
In-degree pondered by the weight of each 
link. In our research, it is pondered by the 
number of trucking trips received by a 
municipality. 

Wkin
i (t) =

∑N(t)

j=1
aij(t)*wij(t)

Weighted out- 
degree 

Out-degree pondered by the weight of 
each link. In our research, pondered by 
the number of trucking trips originating 
at a municipality. 

Wkout
i (t) =

∑N(t)

j=1
aji(t)*wji(t)

Betweenness 
centrality 

The extent to which a particular 
municipality i is located on the shortest 
trucking route connecting other 
municipalities j and k in the network.  

CBi =
∑

k∕=i∕=j∈N
σkj(i)/

σkj  

Closeness 
centrality 

The extent to which a municipality i is 
close to all other municipalities j along 
the shortest routes, reflecting its level of 
accessibility in the trucking network.  

Cci =
n − 1

∑
vj∈V,i∕=jdij  

Source: Own elaboration based on Wang et al. (2011) and Calatayud et al. 
(2017). 
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reported COVID-19 cases. If a node does not belong to either of these 
categories, the predicted probability of being reached by the virus at the 
beginning of the pandemic is 0.6. Instead, the predicted probability is 
close to 1 when municipalities are both a port-city and belong to the 
Special Category. Indeed, Barranquilla, Cartagena de Indias, and Santa 
Marta reported COVID-19 cases by May 6, 2020. 

Next, we used the negative binomial estimation to understand the 
intensive margin or the association between the trucking network 

metrics and the number of COVID-19 accumulated cases by the node 
during the first three months of the pandemic. Each column in Table 5 
reports results for model testing for a different measure of degree cen-
trality. Total degree centrality (column 1) reports a positive association, 
but it is not statistically significant at any level. Conversely, in-degree 
centrality (column 2) reports a positive and significant association at 
the 1% level, meaning that one more inbound trucking route was 
associated with a 12% increase of COVID-19 cases. 

Fig. 3. Trucking network in Colombia and accu-
mulated COVID-19 cases. 
Notes: The blue color intensity relates to the num-
ber of confirmed cases until May 6, 2020. Deep blue 
means higher number of cases, with Bogotá 
reporting the highest number. Node sizes are ac-
cording to the number of truck trips they generate. 
Link size represents the number of truck trips be-
tween pairs of nodes. (For interpretation of the 
references to color in this figure legend, the reader 
is referred to the Web version of this article.) 
Source: Own elaboration in Gephi with data 
extracted from ONL and official COVID-19 records.   

Table 5 
Model results.   

Negative binomial 

(1) (2) (3) (4) (5) 

IRR 

Degree (kt) 1.04     
(1.06)     

In-degree (kin) 1.12***     
(3.78)    

Weighted degree (WkT) 1.00005***     
(2.71)   

Weighted in-degree (Wkin) 1.00008*** 1.00007***    
(4.97) (2.91) 

Weighted out-degree (Wkout)      1.000024     
(0.48) 

Ln(Betweenness) (ln  Cb) 0.75** 0.76** 0.79** 0.81** 0.80** 
(-2.31) (-3.43) (-2.51) (-2.19) (-2.47) 

Closeness (Cc) 9.37* 11.60** 8.26* 9.57* 8.89* 
(1.91) (2.20) (1.71) (1.94) (1.72) 

Network community 1 (NC1, hub Bogotá) 258.48* 89.33** 262.09** 191.91** 219.40** 
(1.87) (2.20) (2.18) (2.50) (2.16)  

Network community 2 (NC2, hub Cali) 286.76* 56.75* 237.71** 148.45** 179.72** 
(1.91) (1.93) (2.14) (2.30) (1.98) 

Network community 3 (NC3, hub Santa Marta) 176.83* 38.03* 126.17** 84.98** 98.94* 
(1.67) (1.70) (1.95) (2.13) (1.84)  

Network community 4 (NC4, hub Medellín) 90.76 19.07 68.77* 45.40* 53.46 
(1.52) (1.39) (1.71) (1.82) (1.58) 

Network community 5 (NC5, hub Cúcuta) 57.10 16.02* 85.21* 54.42* 66.78 
(1.24) (1.26) (1.67) (1.85) (1.57)  

Logit 

Seaport − 14.23*** − 14.52*** − 15.46*** − 15.27*** − 14.78*** 
(-15.47) (-19.94) (-20.56) (-20.71) (-20.32) 

Special Category − 14.45*** − 14.31*** − 15.25*** − 15.03*** − 14.98*** 
(-12.15) (-14.76) (-15.23) (-15.83) (-15.77) 

Constant 0.16 0.43 0.37 0.43 0.42 
(0.16) (0.57) (0.64) (0.60) (0.58) 

α 0.89 0.63 0.39 0.63 0.64 
log pseudolikelihood − 230.01 − 229.29 − 229.49 − 229.48 − 229.45 

Notes: All specifications control for population, MR, and ER. IRR stands for incidence-rate ratios. Z-statistic reported in parenthesis. p < 0.01 ***, p < 0.05 **, p < 0.1 *. 
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The models reported in columns (3) and (4) consider the nodes’ total 
weighted degree and weighted in-degree, both reporting a statistically 
significant effect. In addition, the sequence of models and the z critic 
value shows that the overall effect is generated mainly by the weighted 
in-degree effect (column 5). These results suggest that an increase of a 
half standard deviation in the number of inbound trucks (i.e., 1671.5 
more trucks) was associated with an average increase of 13% confirmed 
COVID-19 cases between March and May 2020. 

Closeness centrality is positively and strongly associated with 
contagion at the 10% confidence level. This result suggests that a one- 
percentage-point increase in a node’s closeness centrality was associ-
ated with an increase of 9.7 COVID-19 cases at the beginning of the 
pandemic. In other words, the more strategically positioned a munici-
pality is in the trucking network, the higher the risk of contagion. 

Finally, there is a positive community effect on the number of cases 
reported by nodes in the same communities. Municipalities that are 
closely connected to nodes with the highest degree of centrality in the 
network (i.e., nodes in the community of Santa Marta and Bogotá), and 
municipalities linked to main seaports (i.e., nodes highly connected to 
Barranquilla, Cartagena de Indias, Santa Marta, or Cali) were expected 
to have a higher number of COVID-19 cases at the beginning of the 
pandemic. 

Table 6 uses the results from models reported in columns (2) and (4) 
as inputs to present the predicted number of confirmed COVID-19 cases 
associated with trucking activity for those nodes that had already been 
reached by the pandemic (i.e., nodes with at least one confirmed case) 
by May 6, 2020. Predictions are presented for different in-degree values 
and weighted in-degree centrality considering an average node in each 
network community. The first row in Table 6 shows the predicted 
number of COVID-19 cases associated with trucking activities for the 
average node at the beginning of an infectious disease pandemic like 
COVID-19. The node’s in-degree and weighted in-degree centralities in 
the light green community (which hub is Bogotá) are 4.8 and 2,560, 
respectively. For this node, the predicted number of cases related 
directly to trucking activities amounts to 13. An additional inbound 
route or 1500 more inbound trucks would increase the predicted num-
ber of cases to 15. An increase of one standard deviation of inbound 
routes and the number of inbound trucks− which in this community 
would equal 9.4 a 5497.1, respectively− , would increase the prediction 
to 38 and 21 confirmed cases holding all other things being equal. These 
cases are related directly to trucking activities. However, given that 
infectious diseases like COVID-19 expand rapidly through social net-
works, indirect cases are expected to be significantly higher. 

6. Discussion 

By understanding the topology of the trucking network, useful in-
formation can be gathered and used to prevent the network from 
spreading infectious diseases. Literature in epidemiology uncovered the 
relationship between trucking activities and both sexually transmitted 
and blood-borne diseases (Apostolopoulos and Sönmez, 2007). This 
paper shows that road freight transportation can also help disseminate 
viral infections throughout the trucking network. We first identify the 
main attributes that make a node in the network more susceptible to be 
infected early during a virus outbreak; this allows us to overcome the 
limitations of spatial association, which has been proven to be a poor 
predictor of contagion unless there is connectivity between potential 
spreaders (Iacus et al., 2020). In the case of Colombia, being a port-city, 
belonging to the Special Category of the DANE classification, and having 
a higher in-degree, weighted in-degree, or closeness centrality are all 
attributes that indicate a node’s higher exposure to contagion. Next, we 
show how an infectious disease can be spread through the trucking 
network. Like in the case of air travel (Yang et al., 2015), the trucking 
network’s hub-and-spoke configuration increases a node’s probability of 
infection once the hub in its community has become infected by the 
virus. For example, when Bogotá and Cali reported their first COVID-19 
cases, their neighbors’ likelihood of being infected increased to 39% and 
41% in the first months, respectively. Moreover, our findings suggest 
that a combination of being a port-city, belonging to the Special Cate-
gory, and having a high (weighted) in-degree centrality significantly 
enhances a node’s potential to disseminate the virus across the network. 
This is the case of the central nodes in the Caribbean community, namely 
Barranquilla, Cartagena de Indias, and Santa Marta, which, among all 
other nodes on the trucking network, have the highest capacity to spread 
the virus not only within their community but throughout the entire 
network. 

The containment measures implemented in Colombia at the begin-
ning of the pandemic included a nationwide lockdown − Presidential 
Decree 457 of March 19, 2020− while allowing the continuity of all 
trucking activities to ensure the supply of essential goods. Moreover, 
Article 3.16 of the Presidential Decree allowed resuming port activities 
related to the freight network. The COVID-19 safety protocols for the 
trucking industry were issued on April 24, 2020. While these measures 
were critical to reduce the risk of COVID-19 contagion, other countries, 
such as China and Singapore, established measures more specifically 
related to the trucking network particularities− i.e., green corridors− to 
mitigate virus propagation through trucking activities. Rio de Janeiro 
was one of the few cases in Latin America that adopted measures in this 
sense: in March 2020, trucking activity was restricted for 15 days be-
tween the metropolitan region and other municipalities in the state of 
Rio de Janeiro. 

Understanding and measuring the risks posed by the trucking 
network provides insightful information to design virus containment 
measures. At the same time, it is unrealistic to monitor the entire 
network completely− each day, there are approximately 35,000 trips in 
the Colombian network (MinTransporte, 2019). Identifying and sur-
veilling corridors, areas, and nodes at high risk of contagion can assist in 
effectively mitigating the risk of virus dissemination while ensuring the 
continuity of the supply chain. To illustrate this, in Fig. 4, we present the 
geographical configuration of the trucking network in Colombia. Given 
the high virus dissemination potential of the Caribbean community, our 
findings suggest focusing containment measures on the corridors con-
necting: (i) municipalities in this community (Roads 90 and 80); (ii) 
Caribbean ports with Bogotá (Highway 45, and sections of highways 
6209 and 5501); and (iii) Caribbean ports with Medellín (Roads 2511 
through 2516). In addition, the high number of COVID-19 cases in 
Bogotá and its central role in the network and community suggest that 
this should be one priority area to implement containment measures. 
Another priority area should be the connection between Cali and the 
international gateways in Buenaventura and Ipiales (Highways 4001, 

Table 6 
Predicted number of COVID-19 cases according to nodes attributes.  

Prediction at Community 

In-degree 
(model 2); 

W. In-degree 
(model 4) 

Light 
Green 
(hub 

Bogota) 

Orange 
(hub 
Cali) 

Purple 
(hub 
Santa 
Marta) 

Blue (hub 
Medellin) 

Dark 
green 
(hub 

Cucuta) 

Mean 
(baseline) 

13.3*; 
13.4** 

7.3; 7.6 13.4; 7.6 2.1; 2.2 5.5; 5.6 

+1; +1500 14.8; 15.2 8.2; 8.6 14.9; 8.6 2.4; 2.5 6.1; 6.4 
+1 S.D. 37.6; 21.2 15.7; 

11.3 
35.6; 11.3 5.4; 3.3 11.4; 7.5 

+2 S.D. 106.4; 
33.6 

33.9; 
16.9 

95.57; 
16.7 

13.9; 4.9 23.7; 10.1 

+3 S.D. 301.3; 
53.3 

72.9; 
25.2 

259.5; 
25.2 

35.7; 7.2 49.5; 13.6 

Notes:Prediction for the subsample of nodes with positive COVID-19 cases (i.e., 
excludes nodes with no cases) are all statistically significant at the 1% level. 
*Predicted cases according to in-degree centrality; **Predicted cases according 
to weighted in-degree centrality. 
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2501, and 2504). 
The containment measures implemented worldwide during the first 

waves of COVID-19 in 2020 show that governments can rely on different 
courses of action to reduce virus dissemination. The challenge, however, 
is to achieve risk mitigation while avoiding disrupting supply chains. 
The approach implemented in this paper provides policymakers with a 
practical tool to diagnose and classify trucking connections according to 
their level of risk. Consequently, policy measures can be customized 
according to such levels. For low-risk connections − i.e., those between 
nodes with low network centrality− measures may limit to requiring 
truck drivers to wear masks and reporting their temperature at trip 
origin and destination (facility-level). For high-risk connections − i.e., 
those in the Caribbean community− checkpoints may be needed at the 
trip origin, destination, and intermediate stops (node-level), where truck 
drivers may present health declaration forms, negative polymerase 
chain reaction (PCR) test results, cargo documents, and other informa-
tion to prove that neither they nor the cargo has been exposed to the 
virus. According to risk levels, customizing containment measures can 
also help lift restrictions progressively once cases subside while main-
taining risk surveillance. 

As suggested by Mao and Bian (2010), it should be noted that there 
are limitations in applying this type of analysis prior to an epidemic 
emergency since the accurate calibration of transmission models 

requires data that can only be collected post-event. Virus mutations may 
also affect the reliability of results. Nevertheless, available literature has 
shown that these analyses can still provide useful guidance to design 
transmission mitigation actions at the beginning of an epidemic 
outbreak, including restricting travel from affected nodes and focusing 
immunization strategies on the nodes with the highest betweenness 
centrality (Yang et al., 2015; Yang and Wang 2016). In addition, the 
validity of findings relies on data quality and consistency across mu-
nicipalities. In the case of Colombia, this risk is mitigated given that data 
collection and management is centralized at the national level and the 
same data management protocols are applied to all municipalities. 

7. Conclusions 

Combining network, statistics, and geographic analysis of road 
freight transportation can help policymakers design risk-based strategies 
to mitigate the expansion of COVID-19-like diseases at the national level 
while avoiding supply chain disruptions. This paper showed that the 
Colombian trucking network has a hub-and-spoke configuration, with 
five highly connected communities. Bogotá, Cali, Cúcuta, Medellín, and 
Santa Marta are the network hubs that enable connectivity between 
communities. In line with previous research on virus dissemination 
through transport networks, our results show that these hubs have a 
high potential to spread contagion towards other hubs, as well as nodes 
in their community. Moreover, the statistical model’s findings suggest 
that the number of COVID-19 cases in a city is linked to its level and type 
of network centrality. Indeed, each additional inbound link is associated 
with a 12% increase in the number of COVID-19 reported cases. Like-
wise, being a port city and a primary economic hub in the trucking 
network is associated with a higher probability of being reached earlier 
by a pandemic. 

While it is unrealistic to thoroughly monitor an extensive network 
with approximately 35,000 trips per day, identifying and surveilling 
corridors, areas, and nodes at high risk of contagion can effectively 
mitigate the risk of virus dissemination. We thus suggest adopting a risk- 
based approach combining network topology and epidemiological in-
formation. Based on the information gathered from Colombia at the 
beginning of the pandemic, which can also apply to future virus out-
breaks similar to COVID-19, the main containment measures should be 
applied on the corridors connecting: (i) municipalities in the Caribbean 
community (Roads 90 and 80); (ii) Caribbean ports with Bogotá 
(Highway 45, and sections of highways 6209 and 5501); and (iii) 
Caribbean ports with Medellín (Roads 2511 through 2516). Moreover, 
Bogotá’s central role for the trucking network and its community sug-
gests that this should be one priority area to implement containment 
measures. Another priority area should be the connection between Cali 
and the international gateways in Buenaventura and Ipiales (Highways 
4001, 2501, and 2504). Further work could focus on applying the 
methodology and approach proposed to other countries, both in Latin 
America and other regions, as a means to provide policymakers with a 
broader understanding of virus dissemination through transport 
networks.  

Annex. 

After the March–May 2020, outbreak of COVID-19 in Colombia, the country has gone through additional waves of increased cases; the first one 
starting during the last months of 2020 and reaching its maximum number of positive cases in January 2021, and the second one starting during March 
2021, and reaching its peak at the end of June 2021. We test the predictive fit of the model in light of these contagion peaks. 

To conduct such an analysis, it is necessary to measure variation in trucking activity within the Colombian network. However, there is no data 
source reporting trucking activity on a daily or weekly basis. We approach this issue by leveraging internet activity as a proxy of public interest in 
trucking activity, considering that the correlation between internet trends and actual activity has proven high and valid for empirical studies 
(Mavragani et al., 2018). We collected weekly data on the Google number of searches for “trucks,” “roads,” “freight,” “freight transportation,” and 
“supplies” (in Spanish) in Colombia during the timeframe of January 1, 2020, to August 10, 2021. Next, we conducted a principal component analysis 

Fig. 4. Colombia’s trucking network (2010–2016, sample annual average). 
Notes: Nodes’ size according to their total degree centrality. Links’ size ac-
cording to their total weight. The color intensity of the nodes corresponds to the 
number of COVID-19 confirmed cases; red meaning a higher number of cases. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
Source: Own elaboration with data from ONL and Open Data Colombia. 
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(PCA) to capture the common variability of public interest on these topics across weeks. All variables correlate positively with the first found 
component, which has an eigenvalue of 1.6 and explains 31% of the total variability. We take the prediction of this principal component as a proxy of 
public interest in trucking activity to conduct marginal predictions on the level of contagion in different moments for a group of nodes in the network. 

The analysis considers critical dates on contagion during the peaks mentioned above, namely August 3, 2020; January 11, 2021; and April 13, 
2021. We take the variation in the predicted principal component one month before each of these dates, with respect to a typical week before the 
pandemic (the one of February 2, 2020), as a reasonable timeframe to see any possible effect in the confirmed number of COVID19 cases. Table 7 
compares the marginal prediction vs. the observed number of COVID19 cases for the main hubs of the network. Since this is not an epidemiological 
approach, it is not expected to precisely forecast the number of confirmed cases, but it consistently replicates the variation in the number of cases 
across peak dates for every hub of the trucking network.  

Table 7 
Marginal prediction vs. observed confirmed number of COVID-19 cases during contagion peaks.  

Date of report (Reference date, % change in 
trucking principal component) 

Community hub 

Bogota Cali Santa Marta Medellín Cúcuta 

Predicted Observed Predicted Observed Predicted Observed Predicted Observed Predicted Observed 

August 3, 2020 3039 3632 2360 667 264 157 475 873 24 290 
(July 5, 2020, +23%) [1041 - 5036] [1009 - 3711] [184–346] [368–583] [11–36] 
Jan 11, 2021 2592 3464 1880 583 207 30 405 565 22 26 
(Dec 13, 2020, +9%) [1005 - 4181] [788 - 2974] [153–262] [313–497] [10–34] 
April 13, 2021 3249 3909 2597 708 292 464 509 1590 25 70 
(Mar 14, 2021, +29%) [1041 - 5445] [1110 - 4084] [195–390] [391–627] [12–37] 

Notes: February 2, 2020, as the reference of trucking activity. The date considered for changes in trucking activity relative to February 2, 2020, is reported inside 
parenthesis along with the percentage change. 95% confidence intervals in brackets. All predictions are statistically significant at the 1% level. 
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